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Abstract—It is an interesting open problem to enable robots
to efficiently and effectively learn long-horizon manipulation
skills. Motivated to augment robot learning via more effective
exploration, this work develops task-driven reinforcement learn-
ing with action primitives (TRAPs), a new manipulation skill
learning framework that augments standard reinforcement learn-
ing algorithms with formal methods and parameterized action
space (PAS). In particular, TRAPs uses linear temporal logic
(LTL) to specify complex manipulation skills. LTL progression, a
semantics-preserving rewriting operation, is then used to decom-
pose the training task at an abstract level, informs the robot
about their current task progress, and guides them via reward
functions. The PAS, a predefined library of heterogeneous action
primitives, further improves the efficiency of robot exploration.
We highlight that TRAPs augments the learning of manipulation
skills in both learning efficiency and effectiveness (i.e., task con-
straints). Extensive empirical studies demonstrate that TRAPs
outperforms most existing methods.

Index Terms—Action primitives, linear temporal logic (LTL),
long-horizon manipulation skills, task-driven RL.

I. INTRODUCTION

ONE OF the ultimate goals of robot learning is to enable
robots to evolve like humans via constant interactions

with the environment. Although deep reinforcement learn-
ing (DRL) has shown great potentials, it, in general, does
not perform well in learning long-horizon manipulation skills
due to the exploration burden and task constraints. Current
research addresses these challenges by performing meaning-
ful exploration. For instance, the robot needs to explore in
the action and state space for effective strategies to enable
diverse skills (e.g., pick-and-place objects of various sizes and
shapes). However, random exploration rarely results in touch-
ing the objects, let alone picking them up. Recent works avoid
exploration problem via careful engineering to learn manipu-
lation skills [1], [2], [3], while others focus on lowering the
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exploration burden by exploiting various temporal abstraction
frameworks [4], [5], [6]. There are also works on robot learn-
ing with task constraints by incorporating formal methods
into RL [7], [8], [9]. However, while these methods exhibit
improved scalability, they often suffer from prohibitive data
efficiency, challenging reward design, weak generalizability,
lack of interpretability, and complex task constraints.

One of the major difficulties in RL is that the robot needs to
learn both what to do and how to do it in order to accomplish
desired tasks. For example, in the Cleanup environment [10]
in Fig. 1, the robot needs to learn how to move its end effector
to grip or push the object, as well as what to grasp or push
and where to move it. Current research has shown that it is not
difficult to perform specific motions for a given task, obtains
rewards from scalar feedback to adjust the motion execution,
and thus completes the given task [11]. However, joint skill
learning is challenging for long-horizon manipulation tasks.

An effective solution to the above issues is a hierarchi-
cal framework, which decomposes policies into high- and
low-level structures. The high-level policies determine what
robots need to do in different environment states, while the
low-level policies focus on how to do with predefined action
primitive modules. A variety of existing works are based on
such a hierarchical structure, ranging from task-and-motion
planning [11], [12] and neural programming [13], [14], [15] to
learning skill libraries based on large offline datasets [16], [17].
While these methods are effective under certain conditions,
many of them either rely on explicit domains for planning,
involve elaborate reward functions, or require large task-
relevant datasets, which limits their scalability. The works
of [18] and [19] have augmented DRL algorithms with pre-
built skill modules. These skill modules, which we refer as
action primitives, are highly robust and reusable, enabling spe-
cific operational goals, such as grasping [20] and collision-free
motion planning [21], [22]. Although these methods retain the
flexibility of reinforcement learning by using low-level poli-
cies as actions for a high-level policy to learn general-purpose
behaviors, they are limited due to the nonreconfigurability of
rigid primitives, or the composition of hard-coded primitives.
The works of [10], [23], and [24] have greatly improved the
exploration efficiency and achieved promising results in learn-
ing manipulation skills by parameterizing the action space of
the DRL. However, they can hardly handle skills with complex
logic and temporal constraints.

Recent advances have applied formal methods to RL to learn
policies that can satisfy complex task constraints. As a for-
mal language, linear temporal logic (LTL) has been widely

2168-2267 c© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on July 21,2024 at 00:32:42 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0009-0001-3132-2809
https://orcid.org/0000-0002-1669-6984
https://orcid.org/0000-0003-2069-9544
https://orcid.org/0000-0002-2167-1861


4514 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 54, NO. 8, AUGUST 2024

Fig. 1. Framework of TRAPs that enables the robot to leverage action primitives to solve manipulation tasks with temporal logic constraints effectively and
efficiently. In the task module, the training manipulation task ϕ is progressed to the extended task ϕt and then encoded by Transformer as task latent features.
In the RL module, the action policy and parameter policies take as input the robot states and task latent features, and then output actions and corresponding
parameters to interact with the environment.

used to describe complex logic and temporal constraints due
to its rich expressivity and resemblance to natural language
[7], [8], [9]. The works of [25], [26], and [27] leverage RL or
optimization-based approaches to deal with robotic systems
with complex LTL specifications in dynamic and uncertain
environments. However, these methods need to construct prod-
uct automaton, which leads to an exponential increase in
computational complexity as the number of states increases,
limiting their generalizability [28]. In contrast, the works
of [7] and [8] accelerate robot exploration and learning by
exploiting LTL progression to generate task instructions. While
the computational complexity can be mitigated, few works
consider long-horizon manipulation skills due to the heavy
exploration burden. Learning from demonstration has been
successful for long-horizon manipulation tasks with LTL spec-
ifications [29], [30]. However, such methods are limited by
the poor generalizability and the high cost of obtaining expert
data.

To address the above challenges, in this work, we pro-
pose task-driven reinforcement learning with action primitives
(TRAPs), a general robot learning framework that uses LTL
progression and predefined action primitive libraries to extend
RL for long-horizon skills with temporal logic constraints.
Particularly, TRAPs is divided into three modules: 1) Env
Module; 2) Task Module; and 3) RL Module. The Env
Module is an environment-dependent model that preprocesses
the observations. In the Task Module, LTL is used to spec-
ify complex tasks. LTL progression, a semantics-preserving
rewriting operation, is then used to progress the training skill
at an abstract level, informs the robot about their current task
progress, and guides them via reward functions. To facilitate
learning, we design a neat transformer architecture to encode
the progressed LTL formula as task latent features at each step.
The RL Module is a task-driven hierarchical reinforcement
learning framework that takes the robot states and task latent
features as input, and then outputs action primitives as well as
the parameters for instantiated execution to interact with the
environment. Unlike previous works, TRAPs enables the robot

to learn task-conditioned policies which can be transferred to
new skill variants. Moreover, due to the integration of formal
methods and action primitives into the DRL algorithm, TRAPs
avoids the complexity of detailed low-level motion planning,
while enhancing the generalization, expressivity, and explo-
ration efficiency of DRL. We highlight that TRAPs augments
robot learning in accelerating robot learning and solving tasks
with temporal logic constraints.

Contributions: The main contributions of this work are
summarized as follows.

1) We introduce a task-driven robot learning framework
that augments standard reinforcement learning algo-
rithms with LTL progression and action primitives to
learn task-conditioned policies and improve exploration
efficiency.

2) We construct task-driven labeled PAMDP (TL-PAMDP)
based on LTL progression, which overcomes the non-
Markovian problem, and theoretically guarantees that
the optimal policy of TL-PAMDP with Markovian
reward function can satisfy the task specification without
compromising the convergence and optimality compared
with the optimal policy of labeled PAMDP (L-PAMDP)
with non-Markovian reward function.

3) We design a neat transformer architecture that encodes
LTL formulas as task latent features to facilitate robot
learning with higher expressivity.

4) It is validated via thorough empirical studies that TRAPs
significantly outperforms most existing works in terms
of learning efficiency and skill performance.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Co-Safe Linear Temporal Logic

LTL has been widely used to specify complex tasks.
Detailed descriptions of the syntax and semantics of LTL can
be found in [31]. As a subclass of LTL, Co-safe LTL (sc-
LTL) can be fulfilled by finite-length state trajectories [32],
which is suitable to describe robotic manipulation skills, for
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example, pick and place. Hence, we focus on sc-LTL in this
work. An LTL formula is co-safe if only temporal opera-
tors �, ∪, and ♦ are used and ¬ is only applied to atomic
propositions (APs) [33]. Given a set of APs �, the seman-
tics of an sc-LTL formula is interpreted over a finite sequence
σ = σ0σ1σ2 . . . σn, where σi ∈ 2�. A sequence σ satisfying
an sc-LTL ϕ at time i ≥ 0 is denoted by 〈σ, i〉 |= ϕ.

B. L-PAMDP and Reinforcement Learning

Reinforcement learning algorithms can be leveraged to learn
the optimal behavior by interacting with the environment. In
general, the environment is modeled as a Markov decision
process (MDP). In this work, we consider an MDP with con-
tinuous state space S in R

n and a parameterized discrete action
space A, which is defined as

A =
⋃

a∈Ad

{(a, x)|x ∈ Xa} (1)

where Ad = {a1, a2, . . . , ak} is a finite set of heterogeneous
actions and each a ∈ Ad corresponds to a set of continu-
ous parameters Xa in R

ma , where ma is the dimension of Xa.
Each action a and its corresponding parameters x form an
action tuple ξ = (a, x). Such an MDP is referred to as a
parameterized action MDP (PAMDP) [34].

To facilitate the use of LTL representation with robot states,
we develop an L-PAMDP by introducing the labeling func-
tion L. A labeling function L : O → 2� is a mapping of an
observation to a task state, which can be considered as a col-
lection of event detectors that fires when p ∈ � holds in the
environment and enables the robot to evaluate whether or not
an LTL specification is satisfied. For example, in the Pick-
and-Place skill, given the observation o that the robot reaches
and grasps the soda can, the corresponding task label L(o) is
mapped to can−grasped, that is, L(o) = can−grasped. The
environment observation space O consists of the robot state
space S and the object pose Sobj in the environment, where
o = (s, s1

obj, s2
obj, . . . , sn

obj) ∈ O and n indicates the number of
objects in the observation space. Note that the object pose is
only returned when the agent’s exploration reaches the vicin-
ity of the object position. Formally, L-PAMDP is constructed
as follows.

Definition 1: An L-PAMDP is a tuple MPA =
(S,A,T, T ,Rϕ,�,O,L, γ, μ), where S is the contin-
uous state space, A is the parameterized discrete action
space defined in (1), T ⊆ S is a finite set of terminal states,
T = P(s′|s, (a, x)) is the transition probability distribution, �
is a set of APs indicating the properties associated with the
states, O is the environment observation space, L : O → 2�

is the labeling function, γ ∈ [0, 1] is the discount factor, μ is
the initial state distribution, and Rϕ is the reward function
defined as

Rϕ =
⎧
⎨

⎩

renv + λrrew, if σ0σ1σ2, . . . , σt � ϕ
renv − λrcost, if σ0σ1σ2, . . . , σt � ϕ

renv, otherwise
(2)

where σi = L(oi), renv is the environmental reward, and rrew
and rcost correspond to the extra rewards when σ satisfies
or does not satisfy the LTL task ϕ, respectively. The term

λ ∈ (0, 1) is a tuning parameter indicating the relative impor-
tance between the environmental reward renv and the task
reward rrew/rcost.

The reward function Rϕ in Definition 1 indicates that the
robot will be given an extra reward rrew if the LTL task ϕ is
completed and will be punished by rcost if it fails. Otherwise,
the robot will be awarded by renv based on the task progress.
For instance, when performing the Pick-and-Place skill, the
robot will get the reward rrew only when the object has been
successfully picked and placed and will be punished if the
skill fails. If the object has been successfully picked, but not
yet be placed, the robot will receive the reward renv.

For a task ϕ, the robot can interact with the environment
following a policy π over an L-PAMDP MPA to learn the
optimal behavior. The policy π : S → A is a function that
maps a state to an action tuple ξ = (a, x) in the parameter-
ized discrete action space A. Unlike classic RL policies on raw
actions, the desired policy π includes a high-level action policy
πa and a set of low-level parameter policies πp (each hetero-
geneous action corresponds to a parameter subpolicy), where
the action policy πa determines the type of action primitive
a ∈ Ad, and the parameter policy πp determines the parameters
x corresponding to the selected action primitive a. The action
primitive a and parameters x together constitute the complete
action tuple (a, x) to be performed in state s.

Given the reward function Rϕ in (2) and the discount factor
γ ∈ [0, 1], the expected discount return under policy π with
s ∈ S can be defined as

Uπ = E
π

[[t=0]∑

∞
	γ tRϕ(s0, ξ0, s1, ξ1, s2, . . . , ξt−1, st, ϕ)

]
.

The objective of reinforcement learning with L-PAMDP is to
search for the optimal policy π∗ that maximizes the expected
return for each state s ∈ S , that is, π∗ = argmaxπUπ (s).

In general, the reward function in conventional reinforce-
ment learning is Markovian, that is, the reward at the current
state st only depends on the transition from the previous state
st−1 to st. However, when a robot performs a specific task
ϕ, the reward received is closely related to the task com-
pletion, that is, σ |= ϕ, and the episode ends if the task is
satisfied or falsified. As mentioned above, the reward func-
tion Rϕ(s0, ξ0, s1, ξ1, s2, . . . , ξt−1, st) is non-Markovian as the
infinite sequence σ = σ0σ1σ2 . . . is defined on the state trajec-
tory ς = s0s1s2 . . . via the labeling function L. In the sequel,
we will discuss how to convert non-Markovian rewards into
Markovian.

C. Problem Formulation

In this section, we first introduce an example to elaborate
on the problems and challenges that need to be addressed in
this article, and the example will be used as a running exam-
ple throughout the work. The problem, along with a mild
assumption, is then formally defined.

Example 1: Consider a long-horizon manipulation skill
Cleanup in Fig. 1. The robot is required to place the spam
can Ospam into the storage bin Gbin and place the jello box
Ojello at the upper right shadow corner Gshadow with temporal

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on July 21,2024 at 00:32:42 UTC from IEEE Xplore.  Restrictions apply. 



4516 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 54, NO. 8, AUGUST 2024

logic constraints. The set of APs � in this task is

{spam−grasped, bin−reached, spam−released,

jello−pushed, shadow−reached}.
Using the above propositions, cleanup can be formulated by
an sc-LTL formula as

ϕcleanup = ♦
(
ϕpush−jellobox ∧ ♦ϕpnp−spamcan

)

where

ϕpush−jellobox = ♦(jello−pushed ∧ ♦shadow−reached)

ϕpnp−spamcan = ♦(spam−grasped∧
♦(bin−reached ∧ ♦spam−released).

In contrast to the majority of existing works that train
the RL policies with hand-designed behaviors for simul-
taneous execution, the more expressive and parameterized
actions are leveraged to train the RL policies in this
work. The library of predefined action primitives A is
{reach, grasp, push, release, atomic} which is introduced in
Section III-A. We emphasize that a wide variety of skills can
be solved with this predefined library of action primitives that
serve as the building blocks. The LTL instruction is used as
task constraints to augment robot learning.

There are two main challenges in Example 1. The first chal-
lenge is how to select the optimal action primitive from the
library and get its corresponding optimal parameters. Another
challenge is how LTL can be used to augment robot learning
and make the learned policies satisfy temporal logic con-
straints. Formally, we first introduce a mild Assumption 1,
which is widely employed in the literature, is considered.

Assumption 1: There exists at least one policy π = [πa, πp]
whose induced path ς = s0s1s2 . . . satisfies the LTL task ϕ.

Problem 1: Given an sc-LTL task formula ϕ and an
L-PAMDP MPA = (S,A,T, T ,Rϕ,�,O,L, γ, μ)
corresponding to ϕ with the reward function
Rϕ(s0, ξ0, s1, ξ1, s2, . . . , ξt−1, st), the goal is to learn a
policy π∗ = [π∗a , π∗p ] that maximizes the discounted rewards,
that is, π∗ = argmaxπUπ (s), while satisfying temporal logic
constraints and augmenting skill learning via LTL instruction.

III. METHODS FOR MANIPULATION SKILL LEARNING

This section presents a novel framework, namely, TRAPs,
to address Problem 1, which leverages the action primitives
to effectively and efficiently learn long-horizon manipulation
skills with temporal logic constraints.

A. Building Blocks: Parameterized Action Primitives

The versatile parameterized action primitives serve as the
building blocks for diverse manipulation skills. In this work,
we consider a primitive library, including five primitives:
1) reach; 2) grasp; 3) push; 4) release; and 5) atomic. The
first four primitives, as functional APIs, can instantiate action
execution via input parameters. It is worth noting that these
input parameters with explicit semantics dramatically increase
the flexibility and utility when performing complex skills.
However, the predefined library of action primitives is hardly

universally applicable to diverse environments. To address this
problem, additional atomic primitive atomic is introduced to
fill the gaps that cannot be filled by other action primitives. The
following describes the details of each motion primitive [10].

1) reach: Move the end effector to a goal position (x, y, z)
based on the input 3-D parameters. Up to 20 atomic
actions are required for execution.

2) grasp: Move the end effector to a pregrasp position
(x, y, z) at a yaw angle χ based on the input 4-D param-
eters, and then close its gripper. Up to 20 atomic actions
are required for execution.

3) push: The end effector reaches a starting position
(x, y, z) at a yaw angle χ and then moves by a displace-
ment (δx, δy, δz) based on the input 7-D parameters. Up
to 20 atomic actions are required for execution.

4) release: The end effector repeatedly applies atomic
actions to open its gripper with no input parameters.
Up to 4 atomic actions are required for execution.

5) atomic: A single atomic robot action is executed.
These action primitives are implemented by hard-coded

closed-loop controllers with different parameters and agnostic
to the underlying environment. For example, reach primitive
is a function freach(s, x) that takes the robot state s and param-
eters x as input, outputs the target state s∗, and then uses a
predefined controller Creach to drive s to s∗. Our RL module,
on the other hand, only needs to choose the appropriate prim-
itive with its corresponding parameters based on robot states
and task latent features so that the given task with temporal
logic constraints can be completed. A key advantage of this
decomposition is that the policy can simply focus on what to
do instead of learning how to do it, thus speeding up robot
learning.

Remark 1: Note that it is difficult to implement a wide
variety of manipulation skills through a predefined library
of hard-coded action primitives. A possible solution to this
challenge is to build a dynamic library of action primitives,
that is, continuously enriching the library of action primi-
tives while learning manipulation skills. Since it is beyond
the scope of this work that focuses on how to efficiently learn
task-conditioned manipulation skills using hard-coded action
primitives, this idea will be pursued in our future research.

B. From LTL Progression to Task-Driven RL

Consider an sc-LTL task formula ϕ and its correspond-
ing L-PAMDP MPA = (S,A,T, T ,Rϕ,�,O,L, γ, μ).
Our goal is to learn an optimal policy π∗ = [π∗a , π∗p ]
while satisfying the temporal logic constraints. To learn
such a policy, the robot will be rewarded according to
Rϕ(s0, ξ0, s1, ξ1, s2, . . . , ξt−1, st), and the episode ends when
the task is completed, falsified, or a terminal state is reached.

To solve this problem, a major challenge is that the reward
function Rϕ depends on the history of states and thus is
non-Markovian. Prior works either encode policies through
a recurrent neural network (RNN) [35] or develop a reason-
ing module [36] to address non-Markovian rewards. However,
these methods are computationally expensive and might be
suboptimal. In this work, we use LTL progression [7], [37]
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to address the non-Markovian issue. Let AT(ϕ) denote the
proposition required to progress the current LTL formula. The
definition of LTL progression is formally given as follows.

Definition 2: Give an LTL formula ϕ and a truth assignment
sequence σ = σ0σ1, . . . , the LTL progression prog(σi, ϕ) at
step i ∀i = 0, 1, . . . , is defined as follows:

prog(σi, p) = True, if p ∈ σi, where p ∈ �
prog(σi, p) = False, if p /∈ σi, where p ∈ �

prog(σi, ϕ) =
⎧
⎨

⎩

ϕ \ p, if AT(ϕ) = p, prog(σi, p)
= True

ϕ, otherwise
prog(σi,¬ϕ) = ¬prog(σi, ϕ)

prog(σi, ϕ1 ∧ ϕ2) = prog(σi, ϕ1) ∧ prog(σi, ϕ2)

prog(σi, ϕ1 ∨ ϕ2) = prog(σi, ϕ1) ∨ prog(σi, ϕ2)

prog(σi,�ϕ) = ϕ
prog(σi, ϕ1 ∪ ϕ2) = prog(σi, ϕ2) ∨ (prog(σi, ϕ1) ∧ ϕ1 ∪ ϕ2).

After each step in an episode, the operator prog in
Definition 2 can be applied to the LTL formula ϕ that takes
the current label σi as input and outputs a task specifica-
tion that reflects which parts of the original task remain
to be addressed. For instance, given a manipulation task
ϕcleanup = ♦(ϕpush−jellobox ∧ ♦ϕpnp−spamcan), it will be pro-
gressed to the subsequent task ϕ̃cleanup = ♦ϕpnp−spamcan once
Gshadow−reached is completed, and will remain the same oth-
erwise. As discussed in [37], a truth assignment sequence
satisfies a given formula at time i if the formula progressed
through σi is satisfied at time i + 1. Such a property can be
formally presented in the following theorem [37].

Theorem 1: Given any LTL formula ϕ and the correspond-
ing truth assignment sequence σ = σiσi+1, . . . , 〈σ, i〉 �
ϕ iff 〈σ, i+ 1〉 � prog(σi, ϕ).

According to Theorem 1, using LTL progression in
Definition 2 for robot learning has the following benefits. First,
since the operator prog is a semantics-preserving rewriting
procedure, it can indicate the progression toward task com-
pletion with diminished remaining instructions by iteratively
applying prog after each step. For instance, the task ϕcleanup
will progress to ♦ϕpnp−spamcan once ♦ϕpush−jellobox holds in
the environment. With this property, we can design reward
functions for robot learning to reflect which parts of the origi-
nal task formula has been satisfied or unsatisfied yet. Another
benefit is its ability to augment robot learning in the following
two aspects: 1) accelerating the robot learning since LTL pro-
gression can provide more exploration termination conditions
while the parameterization of actions can greatly reduce the
action space and 2) solving more complex skills with temporal
logic constraints.

We apply LTL progression to robot learning by 1) augment-
ing PAMDP with ongoing LTL task; 2) iteratively applying
prog after each step; and 3) additionally rewarding the agent
when LTL task progresses to true or false, thus making the
reward function Rϕ Markovian. Based on the LTL progression
in Definition 2, an augmented PAMDP, namely, TL-PAMDP,
is developed as follows.

Definition 3 (TL-PAMDP): Given an L-PAMDP without
reward function MPA = (S,A,O,T, T ,�,L, γ, μ) corre-
sponding to an LTL task ϕ, the TL-PAMDP is constructed
by MPA to MTL � (S̃,A, T̃, T̃ , R̃ϕ,�,O,L, γ, μ̃), where
S̃ = S × cl(ϕ), T̃ = {(s, ϕ)|s ∈ T, or ϕ ∈ {True,False}}, T̃ =
P((s′, ϕ′)|(s, ϕ), (a, x)) = P(s′|s, (a, x)) if ϕ′ = prog(L(s), ϕ)
and T̃ = P((s′, ϕ′)|(s, ϕ), (a, x)) = 0 otherwise, μ̃(s, ϕ) =
μ(s) · τ(ϕ), A, �, O, L, and γ are the same as the elements
in L-PAMDP, and

R̃ϕ =
⎧
⎨

⎩

renv + λrrew, if prog(L(s), ϕ) = True
renv − λrcost, if prog(L(s), ϕ) = False
renv, otherwise.

(3)

The term cl(ϕ) denotes the progression closure of ϕ, that is,
the smallest set containing ϕ that is closed under progression,
and τ(ϕ) denotes the distribution of tasks. If ϕ is determined,
then μ̃(s, ϕ) = μ(s). The rewards renv, rrew, and rcost are the
same as in (2).

With the TL-PAMDP stated in Definition 3, Theorem 2
shows that an optimal policy π∗(ξ |s, ϕ) for the TL-PAMDP
MTL yields the same expected discount reward as an optimal
policy π∗(ξt|s0, ξ0, s1, ξ1, s2, . . . , st, ϕ) that solves LTL task
ϕ in MPA, where π∗ = [π∗a , π∗p ] includes the optimal action
policy and its corresponding optimal parameter policy, and
ξi = (ai, xi) ∈ A is a predefined action primitive at stage i.

Theorem 2: Given a TL-PAMDP MTL =
(S̃,A, T̃, T̃ , R̃ϕ,�,O,L, γ, μ̃) constructed from an
L-PAMDP without a reward function MPA\Rϕ

=
(S,A,T, T ,�,O,L, γ, μ) and an LTL task formula ϕ,
an optimal stationary policy π∗TL(ξ |s, ϕ) for MTL can yield
the same expected discounted return as an optimal nonsta-
tionary policy π∗PA(ξt|s0, ξ0, s1, ξ1, s2, . . . , st, ϕ) for MPA

w.r.t. Rϕ for all s ∈ S and task formula ϕ.
Proof: Given an LTL formula ϕ and the corresponding

infinite truth assignment sequence σ = σiσi+1, . . . , where
σi = L(si), it holds that 〈σ, i〉 � ϕ iff 〈σ, i+1〉 � prog(L(si), ϕ)

according to Theorem 1. Similarly, induction can be used
to show that σ0σ1σ2, . . . , σt |= ϕ iff prog(L(st), ϕ) = true,
and thus it is straightforward to use induction to prove
that the reward Rϕ of MPA defined in (2) is equal to the
reward R̃ϕ of MTL defined in (3) at every time step for
an LTL task formula ϕ, initial state s0 ∈ S, and trajectory
s0, ξ0, s1, ξ1, s2, . . . , ξt−1, st.

Based on the above discussion, we further discuss the rela-
tionship between the optimal policies of MTL and MPA.
Consider any state s ∈ S and an LTL task formula ϕ.
For a given optimal policy π∗TL(ξ |s, ϕ) for MTL, a pol-
icy πPA(ξt|s0, ξ0, s1, ξ1, s2, . . . , st, ϕ) for MPA can be easily
constructed by mimicking the action primitives selection of
π∗TL(ξ |s, ϕ) step by step. This can be done for the following
two reasons. First, since the transition probability P(s′|s, ξ) of
reaching state s′ is the same for MTL and MPA given state s
and action primitive ξ , the two policies will induce the same
probability distribution over traces. Second, since the reward
functions R̃ϕ and Rϕ are equivalent, π∗TL and πPA achieve the
same expected discounted return
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Uπ∗TL = E
π

[[i=0]∑

∞
	γ iR̃ϕ(si, ξi, si+1, ϕ)

]
.

Similarly, if there exists an optimal policy π∗PA(ξt|s0, ξ0, s1,

ξ1, s2, . . . , st, ϕ) for MPA, we can construct a nonstation-
ary policy πTL(ξt|〈s0, ϕ〉, ξ0, 〈s1, ϕ1〉, ξ1, . . . , 〈st, ϕt〉) for MTL

which mimics the action primitives selection of π∗PA step by
step. As discussed above, π∗PA and πTL are able to yield the
same expected discounted return

Uπ∗PA = E
π

[[t=0]∑

∞
	Rϕ(s0, ξ0, s1, ξ1, s2, . . . , ξt−1, st, ϕ)

]
.

Since MTL is a TL-PAMDP, a special kind of MDP,
there must exist a stationary policy π ′TL(ξ |s, ϕ) that achieves
at least as much return as any nonstationary policy
πTL(ξt|〈s0, ϕ〉, ξ0, 〈s1, ϕ1〉, ξ1, . . . , 〈st, ϕt〉). This indicates that
Uπ∗TL ≥ Uπ ′TL = Uπ∗PA Therefore, we show that an optimal
stationary policy π∗TL(ξ |s, ϕ) for MTL is as good as an
optimal nonstationary policy π∗PA(ξt|s0, ξ0, s1, ξ1, s2, . . . , st, ϕ)

for MPA w.r.t. any Rϕ , and vice versa. Thus, Theorem 2 is
proved.

Remark 2: TL-PAMDP is only used for theoretical anal-
yses, rather than constructed in practice. In particular, LTL
progression and label functions are used to detect task state,
progress the task, and return additional task rewards to guide
and facilitate learning. Therefore, the size of the state space
explored by the agent does not increase exponentially with the
length of the LTL formulas.

Remark 3: Since both MPA and MTL are a kind of
PAMDP, the construction of policies in the Proof Section III-B
is performed in the parameterized action space (PAS), that is,
A = ⋃

a∈Ad
{(a, x)|x ∈ Xa}, ξ = (a, x) ∈ A, and the policy

π = [πa, πp] includes both action policy πa and parame-
ter policy πp. These predefined action primitives ξ ∈ A are
implemented by hard-coded closed-loop controllers with dif-
ferent parameters and agnostic to the underlying environment,
so they will not affect the high-level policy learning, which
guarantees the correctness of the relevant policies constructed
in Proof Section III-B.

Based on Definition 3 and Theorem 2, we convert a
non-Markovian decision problem into a Markovian decision
problem. In the following, a hierarchical reinforcement learn-
ing framework is designed to learn the optimal policy for given
TL-PAMDPs.

C. Transformer for LTL Module

LTL formulas can be encoded in a variety of ways,
such as RNN [35] and graph neural network (GNN) [8].
However, RNN is not capable of parallel computation and
thus computationally inefficient, while GNN struggles to
construct generalized graph structures that provide inter-
pretable encoding. In contrast, transformer [38] is capable of
modeling global information and has been proven successful
in natural language processing. In our previous work [39],
a transformer-based encoder for temporal logic, namely,
TF-LTL, is developed to encode LTL formulas. TF-LTL has

Fig. 2. Overview of the TF-LTL model, which takes as input the LTL
formulas and outputs task representations.

two advantages. One is that it enables a better representa-
tion of LTL formulas due to its potentials in modeling global
information, that is, learning high-quality features by consid-
ering the whole context. The other advantage is that it can
provide interpretable guidance to the agent, that is, multihead
self-attention (MSA) can generate more interpretable models
by detecting the distribution of attention in each head.

The overview of the TF-LTL model is shown in Fig. 2,
which takes LTL formulas as input and generates task rep-
resentations. Before fed into the encoder, the given LTL
formula ϕ is first translated into word tokenization Xϕ =
(x0, x1, . . . , xn), where xt, t ∈ 0, 1, . . . , n, represents the oper-
ator or proposition of ϕ, and Xϕ is then encoded into word
embedding XE = [x0E, x1E, . . . , xnE] ∈ R

B×L×D, where B
is the batch size, L is the length of input Xϕ , and D is the
model dimension of the TF-LTL. XE and position embedding
PE are summed to obtain a 1-D token embedding sequence as
the standard input to the encoder, where the position embed-
ding PE in this work is sine and cosine functions of different
frequencies [38]

PE(pos,2i) = sin
(

pos/100002i/D
)

PE(pos,2i+1) = cos
(

pos/100002i/D
)

where pos is the position, and i is the dimension. An example
is provided in Fig. 2 to show the encoding process.

The structure of the encoder in TF-LTL is shown on the right
in Fig. 2, which is composed of identical transformer blocks in
a stack. Each transformer block includes an MSA, a position-
wise fully connected feedforward (MLP), and a layer norm
(LN). The fundamental element in our TF-LTL framework is
the MSA, which models global information by considering the
whole context to improve the representation of LTL formulas.

Given a 1-D token embedding sequence X from LTL input
Xϕ = (x0, x1, . . . , xn), it can be linearly transformed to derive
the query Q, key K, and value V , which are defined as

Q = XWQ, K = XWK, V = XWV
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where WQ, WK , and WV are linear projection matrices. Then,
the similarity between Q and K can be calculated via dot
product to obtain attention as

Attention(Q,K,V) = softmax

(
QKT

√
dk

)
V

where
√

dk is the scaling factor. The global computation
procedure of TF-LTL can be represented as follows:

X0 = [x0E; x1E; · · · ; xnE]+ Epos, Epos ∈ R
L×D

X̂l = MSA
(
LN
(
X̂l
))+ Xl−1, l = 1, 2, . . . ,L

Xl = MLP
(
LN
(
X̂l
))+ X̂l, l = 1, 2, . . . ,L

Xout = LN(Xl)

where Xout denotes the task latent feature output from TF-LTL,
which can be manually designed with suitable dimension for
particular tasks.

It might be arduous to train both TF-LTL and RL mod-
ules in TRAPs at the same time. Therefore, similar to our
previous work [39], we propose an environment-agnostic pre-
training scheme on the basis of TL-PAMDP. The scheme
includes: 1) constructing a special TL-PAMDP Ms

TL with
an LTL task ϕ and a single-state L-PAMDP without reward
Ms

PA = (S,A,T, T ,�,O,L, γ, μ), where S = {s0}, T = ∅,
A =�, T = P{s0|s0, .} = 1, μ(s0) = 1, L(s0, p) = {p}|p ∈�;
2) training TF-LTL to convergence on TL-PAMDP Ms

TL; and
3) transferring the learned TF-LTL as the initial LTL module
to the downstream MTL.

This pretraining scheme can be considered as solving a spe-
cial kind of TL-PAMDP. Since the pretraining scheme exploits
the environment-agnostic nature of LTL semantics, it is more
efficient than directly training complete models in the down-
stream environment. Moreover, due to the modular structure
of TRAPs, the task module is robust to the environment as
long as the task formula remains constant.

Overall, given a target TL-PAMDP, our goal is to learn use-
ful encodings for the corresponding task formula and then uses
these encodings to solve the TL-PAMDP. The advantage of
our approach over traditional methods is that, as the TF-LTL
model guides the robot to better interact with the environment,
it is also gradually updated during the interaction, further facil-
itating the robot’s understanding of the current subtask. This
leads to a mutual improvement, that is, the TF-LTL guides
the robot’s actions, and the results of the actions improve the
TF-LTL for better task instructions.

D. Algorithm Architecture

As shown in Fig. 1, the framework of TRAPs consists of
three modules.

1) Env Module: An environment-dependent model that pre-
processes the observations. In this work, the desired
environment observations are obtained directly from
embedded functions in Robosuite [40].

2) Task Module: A transformer model for the LTL task
formula (discussed in Section III-C).

3) RL Module: A task-driven hierarchical reinforcement
learning framework which decides action primitives and

its corresponding parameters to take in the environment.
In principle, the hierarchical policy framework can be
integrated with any DRL algorithm designed for contin-
uous control. In this article, soft actor–critic (SAC) [40],
a state-of-the-art DRL algorithm, is applied due to its
excellent performance.

For implementation, TRAPs takes as input the observations
of the environment and the current task encoded by the
task module and outputs an action primitive and its corre-
sponding parameters to interact with the environment. The
hierarchical framework from [10] is adopted, in which the
RL module contains a high-level action policy and a low-
level parameter policy. The action policy is represented as
a single neural network, and the parameter policy is a col-
lection of subnetworks, where each subnetwork corresponds
to an action primitive. This structured framework allows us
to accommodate primitives with heterogeneous parameters.
These parameter policy subnetworks are designed to allow
batch tensor computation for primitives with different parame-
ter dimensions, and all output a “one-size-fits-all” distribution
for the parameters x ∈ R

dA , where dA = max
a

da is the

maximum parameter dimension over all primitives. During
primitive execution, the parameter x will be simply truncated to
the length da of the selected primitive a. The visual illustration
of TRAPs is shown in Fig. 1.

While our policy framework is irrelevant to the choice of
the DRL algorithm, in our experiments, we opted for SAC to
maximize environment rewards as well as the policy entropy.
We adapt SAC by modifying its standard critic neural network
Qθ (s, a) and actor neural network πφ(a|s) to Qθ (s, ξ, ϕ) and
the hierarchical policy networks πaφ (a|s, ϕ) and πpψ (x|s, a, ϕ).
The loss for the critic, action policy, and parameter policy are
then designed, respectively, as

JQ =
(

Qθ (s, ξ, ϕ)−
(

r(s, ξ, ϕ)+ γ
(

Qθ̄

(
s′, ξ ′, ϕ ′

)

− αalog
(
πaφ

(
a′|s′, ϕ′))

−αplog
(
πpψ

(
x′|s′, a′, ϕ′

)))))2

Jπa(φ) = E
a∼πaφ

[
αalog

(
πaφ (a|s, ϕ)

)

− E
x∼πpψ

[Qθ (s, ξ, ϕ)]

]

Jπp(ψ) = E
a∼πaφ

E
x∼πpψ

[
αplog

(
πpψ (x|s, a, ϕ)

)

−Qθ (s, ξ, ϕ)].

Here, r(s, ξ, ϕ) ∈ R̃ϕ , αa, and αp determine the maximum
entropy for the action policy and parameter policy, respec-
tively. Since ϕ and ϕ′ in JQ are encoded by TF-LTL, the
weights of TF-LTL can be updated by backpropagation of JQ.

While TRAPs can accelerate exploration, reasoning with
temporal expanded actions remains to present exploration chal-
lenges [41]. In this article, we address this issue using the
approach in [10] that equips robots with affordances to help
discern the utility of actions in different contexts, for exam-
ple, grasping is only performed when the graspable objects
are close, while pushing is only performed when the pushable
objects are close. For implementation, an auxiliary affordance
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score saff(s, x; a) ∈ [0, 1] is added to the reward function
rt ∈ R̃ϕ to express these affordances, which measures the
affinity of the parameter x for a given primitive a in a par-
ticular state s. Concretely, to ensure the universal applicability
of atomic and release primitives, the affordance score is set to
1, while reach, grasp, and push are designed to encourage the
robot to reach the relevant area of interest in the workspace as

saff(s, x; a) = max
p∈P

1− tanh(max((‖xreach − p‖ − ε), 0))

where xreach is the target position of action primitives, ε is a
threshold, and p ∈ P is a set of key points, for example, the
key points p for pushing are the locations of objects to push.

The pseudocode of TRAPs is outlined in Algorithm 1. In
the exploration phase, we progress the given task ϕ so that
it takes into account the sequence of states seen thus far on
each step of any episode (line 9). If the current task satis-
fies ϕt ∈ {True,False} or the robot state s ∈ T , we end the
current episode for the next phase of exploration (lines 10
and 11). Otherwise, ϕt is encoded as task latent features by
TF-LTL as introduced in Section III-C (line 13). The primi-
tive type at and its corresponding parameters xt are sampled
from action policy πaφ and parameter policy πpψ and then exe-
cuted in environment to obtain reward rt and next state st+1
(lines 15–18). To facilitate exploration, an additional reward
based on the affordance score is added to the reward func-
tion (line 19). The transitions are stored in the replay buffer
(line 20). In the training phase, the Q network, TF-LTL, action
policy, and parameter policy are updated via gradient descent,
respectively, on each step (lines 25–28).

E. Theoretical Advantages of TRAPs

In contrast to conventional DRL algorithms, the action space
of TRAPs consists of heterogeneous parameterized action
primitives, that is, A = ⋃

a∈Ad
{(a, x)|x ∈ Xa}. These action

primitives are agent-centric as their execution is implemented
by the underlying hard-coding and depends only on the robot
states. The RL policy of TRAPs is environment-centric, which
selects appropriate action primitives as well as their corre-
sponding parameters to instantiate its execution based on the
current environment state to accomplish the desired task. This
PAS-based RL framework offers several advantages. First, it
allows the robot to focus on learning what to do rather than
on learning how to do it, which greatly reduces the learn-
ing and exploration burden. Also, since each action in the
PAS has a clear physical significance, such as reach, push,
grasp, etc., making RL policies more interpretable. That is,
given a set of n viable policies for a task T : {τ i}ni=1 ={(si

1, ϕ
i
1), (a

i
1, xi

1), . . . , (a
i
Ti
, xi

Ti
), (si

Ti+1, ϕ
i
Ti+1)}ni=1, the corre-

sponding action sketches, which capture the high-level task
semantics and provide useful abstractions, can be represented
as {Ki}ni=1 = {ai

1, ai
2, . . . , ai

Ti
}ni=1, and, from these action

sketches, we can easily understand the internal structure of the
RL policies. For instance, one of the action sketches for Pick-
and-Place skill is {grasp, reach, release}, which means that the
robot needs to pick up a soda can, and moves it to a specific
position, then releases the soda can. This interpretability pro-
vides a basis for policy transferability, that is, semantically

Algorithm 1 TRAPs
1: procedure INPUT: (An LTL formula ϕ and the TL-PAMDP MTL corresponding

to ϕ)
Output: Optimal action policy π∗aφ (a|s, ϕ) and its corresponding optimal

parameter policy π∗pψ (x|s, a, ϕ)

Initialization: Q network Qθ (s, ξ, ϕ), action policy πaφ (a|s, ϕ), parameter
policy πpψ (x|s, a, ϕ), replay buffer D

2: Load the pretrained weights χ to the TF-LTL module
3: for iteration 1,2,...,N do
4: for episode 1,2,...,M do {Exploration Phase}
5: Initialize timer t← 0
6: Initialize episode s0
7: Initialize LTL formula ϕ0 ← ϕ

8: while episode not terminated do
9: ϕt ← prog

(
L(s), ϕt−1

)

10: if ϕt ∈ {True,False} or s ∈ T then
11: Break
12: else
13: ϕt is encoded by TF-LTL as ϕem
14: end if
15: Sample primitive type at from action policy πaφ (at |st, ϕem)

16: Sample primitive parameters xt from parameter policy
πpψ (xt |st, at, ϕem)

17: Truncate sampled parameters to dimension of sampled primitive
xt ← xt

[
:dat

]

18: Execute at and xt in environment, obtain reward rt and next state
st+1

19: Add affordance score to reward rt ← rt + λsaff (st, xt; at)
20: Add transition to replay buffer

D← D ∪ {st, at, xt, rt, ϕt, st+1
}

21: Update timer t← t + 1
22: end while
23: end for
24: for training step 1,2,...,K do {Training Phase}
25: Update Q network: θ ← θ − λlr∇θ JQ
26: Update TF-LTL: χ ← χ − λlr∇χ JQ
27: Update action policy: φ← φ − λlr∇φJπa (φ)
28: Update parameter policy: ψ ← ψ − λlr∇ψ Jπp (ψ)

29: end for
30: end for
31: end procedure

similar skills have similar structures of action policies with
different parameters. By taking advantage of the hierarchical
structure of TRAPs, we can reuse the action policies from
semantically similar skills or expert demonstrations and only
need to update the parameter policies for new skills, thus
significantly accelerating robot learning. The above advan-
tages guarantee promising performance of our method by
experiments as shown in Section IV.

In addition, by integrating with formal methods, TRAPs is
capable of decomposing the long-horizon skill at an abstrac-
tion level via LTL progression, informing the robot their
current task progress, and guiding robot learning via reward
functions. This task-driven method provides additional ter-
mination conditions for the learning process to improve the
exploration efficiency, that is, the current training episode ends
when the task is completed, falsified, or a terminal state is
reached. Meanwhile, as discussed before, the reward function
Rϕ is non-Markovian when learning policies that satisfy LTL
task constraints on the L-PAMDP. To overcome this issue,
TRAPs constructs a novel TL-PAMDP with Markovian reward
function R̃ϕ by using LTL progression, which theoretically
ensures that the convergence and optimality are not compro-
mised. We demonstrate in Section IV the advantages of using
task-driven approaches for diverse long-horizon manipulation
skills. Moreover, a TF-LTL is developed to encode LTL formu-
las in this work. Benefiting from the capability of Transformer
in modeling global information, that is, learning high-quality
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TABLE I
SKILLS, SKILL DESCRIPTIONS, AND CORRESPONDING LTL FORMULAS

features by considering the whole context, TF-LTL is able
to better represent LTL formulas. Also, TF-LTL can provide
improved interpretable instruction for agents, as multiheaded
self-attentiveness is able to produce more interpretable mod-
els by the attention distribution of each head. We demonstrate
the promising performance of transformer-based encoders for
LTL formulas in Section IV.

IV. EXPERIMENTS

In this section, we evaluate TRAPs against previous work.
Particularly, extensive experiments are carried out to investi-
gate 1) Performance: whether TRAPs outperforms previous
methods in terms of learning efficiency and effectiveness;
2) Expressivity: whether TRAPs can facilitate the understand-
ing of the LTL task via TF-LTL, and thus better guide the
selection and combination of action primitives to complete
the task; 3) Satisfiability: whether TRAPs can synthesize
task-conditioned policies to satisfy task specifications; and
4) Transferability: whether TRAPs can be applied to semanti-
cally similar skill variants to improve the learning efficiency.

A. Experimental Setup

Environments and Skills: Robosuite [42], a framework for
manipulation tasks that emphasizes realistic simulation and
control, is employed in this work to evaluate the performance
of TRAPs. For the purpose of comparison, six manipula-
tion skills of different complexities in [10] are selected.
The detailed descriptions and the corresponding LTL formu-
las of the skills are presented in Table I. At each step, the
robot will select and execute either an atomic action or a
nonatomic action primitive with specific parameters as out-
lined in Section III-A, and return 1) a Markovian reward
signal for robot learning; 2) the observations consisting of
the robot’s state and the object’s pose in the environment;
and 3) the progressed LTL formula that indicates the progress
toward task completion. The Markovian reward function used
for the experiments is shown in (3), where renv is the default
reward setting in Robosuite [42], rrew = 10, rcost = 10−5,
and λ = 0.75. All evaluations are implemented on a desktop
running Ubuntu 18.04 with Intel Core i9 CPU and NVIDIA
3090 GPU.

Baselines: The first (also the simplest) baseline is the
standard SAC model [40], which executes only atomic prim-
itive. One way to improve the efficiency of reinforcement

learning and synthesize task-conditioned policies is to generate
task instructions using LTL semantics to guide robot learn-
ing [8]. In this article, we implement this method to learn
manipulation skills by extending the standard SAC with
GNN-encoded LTL semantics (SACGNN-LTL) and using it
as a baseline for our method. Another important baseline is
the manipulation primitive-augmented reinforcement learning
(MAPLE) [10], which is an augmented reinforcement learning
framework based on a library of predefined behavioral primi-
tives. To demonstrate the superiority of Transformer-encoded
LTL semantics in robot learning, thanks to the modular-
ity of our approach, we develop two additional baselines
by modifying the task modules in TRAPs: one is based
on GNN-encoded LTL (TRAPsGNN-LTL) and the other is
encoded with Transformer (TRAPsTF-LTL). In addition, when
comparing the success rate of skills, besides the baselines
described above, we add three additional baselines, includ-
ing: 1) double actor–critic (DAC) [43]; 2) open-loop task
policy (Open Loop) [44]; and 3) hierarchical reinforcement
learning that determines the primitive type and parameters
independently (Flat) [45].

B. Main Experimental Results

In this section, TRAPs is evaluated in terms of performance,
expressivity, satisfiability, and transferability.

1) Performance: TRAPs and the baseline approaches are
employed to perform the six manipulation skills. Fig. 3 shows
the evolution of reward for the three main baselines and the
two variants of TRAPs during training. The total training
times are listed in Table II, where \ indicates the failure of
skill learning. It is observed that 1) algorithms with action
primitives (MAPLE, TRAPsGNN-LTL, and TRAPsTF-LTL) per-
form better than those without action primitives (SAC and
SACGNN-LTL), especially when relatively complex skills (Pick
and Place, Stack, Nut Assembly, and Cleanup) are considered,
that is, receiving 2–3 times higher rewards; 2) TRAPs can
achieve the same performance as MAPLE for relatively sim-
ple skills (Lift, Door Opening, Pick and Place, and Stack) and
shows better performance in complex skills (Nut Assembly
and Cleanup); 3) TRAPs shows higher learning efficiency
than MAPLE and such an advantage becomes more significant
with the increase of skill complexity, since LTL progres-
sion can decompose the training skill at an abstract level,
informs the robot about their current task progress, and guides
them to complete tasks via reward functions as discussed in
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Fig. 3. Plots of normalized reward curves. These learning curves show the mean and standard deviation of the episodic task reward throughout training. All
experiments are averaged over six seeds.

TABLE II
TOTAL TRAINING TIME (HOURS)

Section III-B; 4) TRAPsTF-LTL always performs similarly or
better than TRAPsGNN-LTL and shows higher learning effi-
ciency, especially in complex skills (Cleanup). This is due
to the two advantages of Transformer: a) the ability to better
represent the LTL formula and b) the interpretable instructions
to agents as stated in Section III-C; and 5) TRAPsTF-LTL uses
the shortest training time compared to all baselines, with over
12% reduction against the method without LTL (MAPLE).

The success criteria for skill completion from [10] are
employed to further evaluate the performance of TRAPs and
all baselines. The trained policy is evaluated by 20 episodes
with the mean of their success rates as our final skill success
rate. The results of the success rate are listed in Table III.
First, it is observed that TRAPsTF-LTL achieves the highest
success rate compared to all baselines, that is, 100% in most
of the evaluation skills except Cleanup. Although the success
rate of MAPLE is close to ours, TRAPs has a slightly better
success rate than MAPLE overall. As discussed before, due to
the guidance provided by LTL in the learning process, TRAPs
has better learning efficiency. Second, algorithms with action
primitives (MAPLE, TRAPsGNN-LTL, and TRAPsTF-LTL) show

a much higher success rate than algorithms (DAC, SAC, and
SACGNN-LTL) without action primitives. Especially when con-
sidering complex manipulation skills (e.g., Nut Assembly and
Cleanup), algorithms without action primitives are hard to suc-
ceed due to the exploration burden and task constraints. While
the Open-Loop baseline is capable of solving basic skills, such
as Door Opening and Stack, it struggles when the skill requires
the robot to perform adaptive reasoning on the current state.
The Flat baseline uses a hierarchical framework with action
primitives; however, it still struggles to perform all skills, espe-
cially when the skills are complex. In contrast, the hierarchical
structure in TRAPs is the key to proper reasoning over a library
of heterogeneous action primitives. Overall, the results show
that TRAPs that integrates RL with formal methods and PAS
can efficiently learn diverse manipulation skills.

2) Expressivity: The expressivity of TRAPs is evaluated in
two ways: 1) the internal structural composability of manip-
ulation task policies and 2) the advantages of encoding LTL
formulas with TF-LTL. We first introduce the composition-
ality score from [10], a quantifiable metric to measure the
degree of compositional behavior within a learned policy.
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TABLE III
FINAL SKILL SUCCESS RATE (%)

Fig. 4. (Top) Visualization of action sketches corresponding to the learned
policies of the agent utilizing TRAPsTF-LTL in six evaluation environments.
Each row corresponds to a single sketch progressing temporally from left to
right. (Bottom) Visualization of action sketches and snapshots for ϕcleanup.

Fig. 5. Visual representation of composability scores. TRAPs has higher
compositionality scores than MAPLE. Among the two variants of TRAPs,
TRAPsTF-LTL has higher compositionality scores than TRAPsGNN-LTL.

Given a set of action sketches {Ki}ni=1 = {ai
1, ai

2, . . . , ai
Ti
}ni=1,

the compositionality score can be defined as

fcomp(T ,L) = 1

n(n− 1)

∑

i �=j

(
1− dLev

(
Ki,Kj

)

max
(|Ki|,

∣∣Kj
∣∣)
)

(4)

where dLev(Ki,Kj) is the Levenshtein distance [46] among
action sketches and L is the library of action primitives. Note
that each nonatomic primitive type is treated as a unique token
and each individual occurrence of an atomic primitive is also
treated as a unique token in this work. A higher score means
better compositionality.

The action sketches of TRAPsTF-LTL with six seeds are
visualized in Fig. 4. The compositionality scores are visual-
ized in Fig. 5. Apparently, given a library of action primitives,
TRAPs can select and combine appropriate action primitives
from the library to complete diverse skills. Moreover, from
the action sketch, user can conveniently observe the rational-
ity of the action primitive selection based on the skill. Fig. 5
also indicates that TRAPs has higher compositionality scores
than MAPLE, since the use of LTL can facilitate the robot’s

Fig. 6. Heads concentration from attention view of TF-LTL on ϕpnp. The
weights before and after the convergence of MSA for the TF-LTL zero layer
correspond to (a) and (b), respectively.

selection of action primitives by decomposing the task into
subtasks. Among the two variants of TRAPs, TRAPsTF-LTL
has higher compositionality scores than TRAPsGNN-LTL, since
Transformer can better represent the LTL formula and provides
interpretable instructions in learning.

To illustrate the expressivity of TRAPs, take the Pick-and-
Place skill for instance. The weights before and after the
convergence of MSA for the TF-LTL zero layer are shown in
Fig. 6, in which the bars of different colors and lengths rep-
resent different heads and their weights on the corresponding
token. The weights of the tokens (APs) are almost the same at
the start of training as shown in Fig. 6(a), which indicates that
the robot has no clear preference for the current LTL instruc-
tion. When the training is over, the weight of “grasped” is
significantly greater than the other tokens, indicating that there
is a higher chance that grasped will be selected, as shown in
Fig. 6(b). It further demonstrates the rationality and expres-
sivity of our framework in selecting and composing action
primitives into policies.

3) Satisfiability: We verify the task satisfiability of TRAPs
using the Cleanup skill environment, that is, whether TRAPs
can synthesize task-conditioned policies. We define a task
constraint ϕ′cleanup = ♦(ϕpnp−spamcan ∧ ♦ϕpush−jellobox) in an
opposite order of ϕcleanup. In English, ϕ′cleanup means “the robot
must first place the spam can spam into the storage bin bin,
and then places the jello box jello at the upper right shadow
corner shadow.” In Figs. 4 and 7, the action sketches and snap-
shots corresponding to the policies with ϕcleanup and ϕ′cleanup
constraints are visualized, respectively. It can be seen that,
given diverse task constraints, our method is able to synthesize
the corresponding task-conditioned policies to successfully
perform these tasks via adjusting the LTL formulas in the task
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Fig. 7. Action sketches and snapshots for ϕ′cleanup.

Fig. 8. Success rate curves for learning from scratch and transfer-based
policy learning in the Pick-and-Place Bread skill.

Fig. 9. Ablation experiment results. (a) Reward curves for ablation exper-
iments on the role of LTL and PAS in the Cleanup skill. (b) Success rate
curves for skill learning with different lengths of LTL formula specification.

module without modifying other parts of the algorithm. As
TRAPs is modular, the above-mentioned properties grant more
flexibility and robustness to our algorithm when addressing
diverse skills.

4) Transferability: The expressivity of TRAPs provides a
basis for policy transfer to similar skills. Since semanti-
cally similar skills generally have similar structures of action
sketches or action policies but different parameters, when
encountering a new semantically similar skill, we only need to
update the parameter policy. This idea is demonstrated using a
Pick-and-Place environment, where the action policy of pick-
ing and placing a soda can is transferred to a similar skill,
but with a different object (e.g., bread) and different target
placement. The success rate curves for learning from scratch
and transfer-based policy learning are presented in Fig. 8. It
is observed that the transfer-based policy is over three times
as efficient as learning from scratch. The experimental results
illustrate that the learned action sketches or action policies can
be reused to semantically similar skills for rapid application
to related skill variants.

C. Ablation Experiments

Ablation experiments are conducted to show how LTL and
PASs contribute to the performance of TRAPs. In particular,
for the learning of Cleanup skill, TRAPs is compared with
a set of variants: 1) without LTL and PAS (SAC); 2) with-
out PAS (SAC+LTL); and 3) without LTL (SAC+PAS).
Fig. 9(a) shows the reward curves, which indicate that both
LTL and PAS are able to improve the performance of manipu-
lation skill learning, and PAS alone outperformed LTL alone.
Our approach (TRAPs) achieves the best performance com-
pared to the first two. In addition, the use of LTL enforces
the satisfaction of the task specification, as described in
Section IV-B.

Since the length of an LTL formula is determined by the
number of APs and operators (OP), experiments are conducted
to show how the performance of the learned policies varies
with the number of APs and OPs in the LTL formula. Fig. 9(b)
demonstrates the success rate of skill learning with different
length of LTL formula specification. It can be seen that as the
length of the LTL formula increases, that is, with more task
constraints, the efficiency of skill learning decreases, and the
performance of the learned policies drops slightly. However,
they are still in an acceptable range.

D. Special Skills Learning

1) Learning of Interleaving Skills: Besides the learning of
sequential tasks demonstrated above, LTL progression can also
be used to handle interleaving tasks. Consider an interleaving
task represented by the following LTL formula:

ϕinterleaving = ♦
((
♦spam−grasped ∧ ♦ϕpush−jellobox

)

∧♦(bin−reached ∧ ♦spam−released))

where

ϕpush−jellobox = ♦(jello−pushed ∧ ♦shadow−reached).

In English, ϕinterleaving means “the robot first grasps the spam
can spam and pushes the jello box jello at the upper right
shadow corner shadow, then takes the grasped spam to bin,
and releases spam into the bin.” Note that spam−grasped and
ϕpush−jellobox can be executed in different orders, and the next
subtasks can only be performed when both spam−grasped and
ϕpush−jellobox are satisfied. Fig. 10(a) and (b) shows the action
sketches and snapshots of two different execution sequences
of ϕinterleaving, respectively, which demonstrate the capability
of TRAPs in learning interleaving tasks.

2) Learning of Contact-Rich Skills: To show TRAPs can
learn skills with complex dynamics, for example, nonprehen-
sile manipulation or those involving contact-rich interactions,
the learning of Peg Insertion skill is considered, which requires
the robot to pick up the peg and inserts it into the opening of a
wooden block. This process can be described as the LTL for-
mula ϕpeg−in = ♦(peg−grasped ∧ ♦peg−inserted). Fig. 11(a)
shows the action sketches and snapshots for Peg Insertion skill.
It can be observed that the robot uses the grasp primitive and
the reach primitive to pick up the peg and aligns it with the
hole of the block, respectively. Atomic actions are then used
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Fig. 10. Action sketches and snapshots for Cleanup skill with interleaving
task constraint. (a) and (b) demonstrate two different skill execution sequences
with ϕinterleaving constraint, respectively.

Fig. 11. Learning of Peg Insertion skill. (a) Action sketches and snapshots.
(b) Success rate curve in the learning process.

to complete the contact-rich insertion. Fig. 11(b) shows the
success rate of learning the Peg Insertion skill.

V. CONCLUSION

This work develops a TRAPs for robot skill learning. In
particular, TRAPs is well suited to long-horizon manipulation
skills by augmenting standard RL in two ways. On the one
hand, TRAPs uses LTL progression to decompose the train-
ing task at an abstract level, informs the robot about their
current task progress, and guides them via reward functions.
TF-LTL is developed to encode LTL formulas as task latent
features to facilitate robot learning with higher expressivity.
On the other hand, the PAS, a predefined library of hetero-
geneous action primitives, further improves the efficiency of
robot exploration. Extensive empirical studies demonstrate that
TRAPs outperforms most existing methods. Since this work
mainly focuses on static tasks and predefined primitive library,
ongoing research will consider adaptive task formula inference
and dynamic primitive library to enable TRAPs to learn more
diverse and challenging missions.
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